DebiChem Project
Periodic ab initio calculations
DebiChem Periodic Ab Initio Calculations

This metapackage will install packages doing periodic ab initio calculations which might be useful for chemists.


For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:

If you discover a project which looks like a good candidate for DebiChem to you, or if you have prepared an unofficial Debian package, please do not hesitate to send a description of that project to the DebiChem mailing list

Links to other tasks

DebiChem Periodic ab initio calculations packages

Official Debian packages with high relevance

전자 구조 계산을 위한 패키지
Versions of package abinit
Debtags of package abinit:
fieldchemistry, physics
Popcon: 16 users (12 upd.)*
Newer upstream!
License: DFSG free

ABINIT는 메인 프로그램이 퍼텐션의 슈우도 및 평면파 기저를 사용해서 밀도 함 수 이론 (Density Functional Theory (DFT))내에서 전자와 핵 (분자 및 주기적 고체)으로 구성된 시스템의 전체 에너지, 전하 밀도, 전자 구조를 찾을 수 있게 해주는 패키지입니다.

ABINIT는 또한 DFT 힘과 압력에 따라 지오메트리를 최적화하거나, 또는 이러한 힘들을 사용하여 분자동역학적 모의실험을 수행하거나, 또는 동적 매트릭스, Born 유효 전하, 및 유전체 텐서를 생성하는 옵션을 포함합니다. 여기 상태는 시간 종 속 밀도 함수 이론 (또는 분자) 또는 다체 섭동론 (GW 근사법)내에서 계산될 수 있습니다. 주요 ABINIT 코드외에도 여러 유틸리티 프로그램이 제공됩니다.

이 패키지는 계산 수행에 필요한 실행 파일들을 포함합니다 (단, 퍼텐션의 슈우 도는 제공되지 않습니다). 퍼텐션의 슈우도 세트를 위해 abinit-data 패키지를 설치하십시오.

Please cite: X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah and J. W. Zwanziger: ABINIT: First-principles approach to material and nanosystem properties. (eprint) Comput. Phys. Commun. 180(12):2582-2615 (2009)
Ab Initio Molecular Dynamics
Versions of package cp2k
Popcon: 15 users (19 upd.)*
Versions and Archs
License: DFSG free

CP2K is a program to perform simulations of solid state, liquid, molecular and biological systems. It is especially aimed at massively parallel and linear scaling electronic structure methods and state-of-the-art ab-initio molecular dynamics (AIMD) simulations.

CP2K is optimized for the mixed Gaussian and Plane-Waves (GPW) method based on pseudopotentials, but is able to run all-electron or pure plane-wave/Gaussian calculations as well. Features include:

Ab-initio Electronic Structure Theory Methods using the QUICKSTEP module:

  • Density-Functional Theory (DFT) energies and forces
  • Hartree-Fock (HF) energies and forces
  • Moeller-Plesset 2nd order perturbation theory (MP2) energies and forces
  • Random Phase Approximation (RPA) energies
  • Gas phase or Periodic boundary conditions (PBC)
  • Basis sets include various standard Gaussian-Type Orbitals (GTOs), Pseudo- potential plane-waves (PW), and a mixed Gaussian and (augmented) plane wave approach (GPW/GAPW)
  • Norm-conserving, seperable Goedecker-Teter-Hutter (GTH) and non-linear core corrected (NLCC) pseudopotentials, or all-electron calculations
  • Local Density Approximation (LDA) XC functionals including SVWN3, SVWN5, PW92 and PADE
  • Gradient-corrected (GGA) XC functionals including BLYP, BP86, PW91, PBE and HCTH120 as well as the meta-GGA XC functional TPSS
  • Hybrid XC functionals with exact Hartree-Fock Exchange (HFX) including B3LYP, PBE0 and MCY3
  • Double-hybrid XC functionals including B2PLYP and B2GPPLYP
  • Additional XC functionals via LibXC
  • Dispersion corrections via DFT-D2 and DFT-D3 pair-potential models
  • Non-local van der Waals corrections for XC functionals including B88-vdW, PBE-vdW and B97X-D
  • DFT+U (Hubbard) correction
  • Density-Fitting for DFT via Bloechl or Density Derived Atomic Point Charges (DDAPC) charges, for HFX via Auxiliary Density Matrix Methods (ADMM) and for MP2/RPA via Resolution-of-identity (RI)
  • Sparse matrix and prescreening techniques for linear-scaling Kohn-Sham (KS) matrix computation
  • Orbital Transformation (OT) or Direct Inversion of the iterative subspace (DIIS) self-consistent field (SCF) minimizer
  • Local Resolution-of-Identity Projector Augmented Wave method (LRIGPW)
  • Absolutely Localized Molecular Orbitals SCF (ALMO-SCF) energies for linear scaling of molecular systems
  • Excited states via time-dependent density-functional perturbation theory (TDDFPT)

Ab-initio Molecular Dynamics:

  • Born-Oppenheimer Molecular Dynamics (BOMD)
  • Ehrenfest Molecular Dynamics (EMD)
  • PS extrapolation of initial wavefunction
  • Time-reversible Always Stable Predictor-Corrector (ASPC) integrator
  • Approximate Car-Parrinello like Langevin Born-Oppenheimer Molecular Dynamics (Second-Generation Car-Parrinello Molecular Dynamics (SGCP))

Mixed quantum-classical (QM/MM) simulations:

  • Real-space multigrid approach for the evaluation of the Coulomb interactions between the QM and the MM part
  • Linear-scaling electrostatic coupling treating of periodic boundary conditions
  • Adaptive QM/MM

Further Features include:

  • Single-point energies, geometry optimizations and frequency calculations
  • Several nudged-elastic band (NEB) algorithms (B-NEB, IT-NEB, CI-NEB, D-NEB) for minimum energy path (MEP) calculations
  • Global optimization of geometries
  • Solvation via the Self-Consistent Continuum Solvation (SCCS) model
  • Semi-Empirical calculations including the AM1, RM1, PM3, MNDO, MNDO-d, PNNL and PM6 parametrizations, density-functional tight-binding (DFTB) and self-consistent-polarization tight-binding (SCP-TB), with or without periodic boundary conditions
  • Classical Molecular Dynamics (MD) simulations in microcanonical ensemble (NVE) or canonical ensmble (NVT) with Nose-Hover and canonical sampling through velocity rescaling (CSVR) thermostats
  • Metadynamics including well-tempered Metadynamics for Free Energy calculations
  • Classical Force-Field (MM) simulations
  • Monte-Carlo (MC) KS-DFT simulations
  • Static (e.g. spectra) and dynamical (e.g. diffusion) properties
  • ATOM code for pseudopotential generation
  • Integrated molecular basis set optimization

CP2K does not implement conventional Car-Parrinello Molecular Dynamics (CPMD).

DFT and beyond within the projector-augmented wave method
Versions of package gpaw
Popcon: 36 users (10 upd.)*
Versions and Archs
License: DFSG free

A density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE). It uses real-space uniform grids and multigrid methods, atom-centered basis-functions or plane-waves.

Please cite: J. J. Mortensen, L. B. Hansen and K. W. Jacobsen: Real-space grid implementation of the projector augmented wave method. (eprint) Physical Review B 71(3) (2005)
고성능 전산 화학 소프트웨어
Versions of package nwchem
Debtags of package nwchem:
Popcon: 9 users (8 upd.)*
Newer upstream!
License: DFSG free

NWChem은 전산 화학 프로그램 패키지입니다. 대규모 과학 계산 화학 문제를 효율 적으로 처리 할 수 있는 능력과 고성능 병렬 슈퍼컴퓨터에서 기존에 워크스테이 션 클러스터까지 사용 가능한 병렬 컴퓨팅 리소스의 사용에서 확장가능한 방법을 제공합니다.

NWChem은 다음을 처리할 수 있습니다:

  • 분자의 높은 정확도의 계산을 위해 가우시안 기초 함수를 사용하는 분자 전자 구조 방법
  • 분자, 액체, 결정체, 표면, 반도체, 금속을 계산하기 위한 유사 가능성 평면파 전자 구조 방법
  • Ab-initio 및 고전 분자 역학 시뮬레이션
  • 혼합된 양자 고전 시뮬레이션
  • 수천 개 프로세서에 대한 병렬 스케일링

아래와 같은 특징을 포함합니다:

  • 분자 전자 구소 방법, 2차 도함수 분석:
  • 제한되거나/제한되지 않는 Hartree-Fock (RHF, UHF)
  • 많은 로컬, 비로컬 (그래디언트 보정) 또는 하이브리드 (로컬, 비로컬, HF) 교환 상관 관계 가능성을 사용하는 제한된 밀도 기능 이론 (DFT)
  • 분자 전자 구조 방법, 그라디언트 분석:
  • 제한된 오픈쉘 Hartree-Fock (ROHF)
  • 무제한 밀도 기능 이론 (DFT)
  • RHF 및 UHF 참조를 사용하는, 2차 Moeller-Plesset 변화 이론 (MP2)
  • ID 근사값 (RI-MP2)의 해상도를 갖는 MP2
  • 활성 공간 SCF (CASSCF) 완성
  • 시간 종속 밀도 기능 이론 (TDDFE)
  • 분자 전자 구조 방법, 단일 포인트 에너지:
  • MP2 스핀 컴포넌트 스케일링 방식 (SCS-MP2)
  • RHF 및 UHF 참조를 갖는 싱글 및 더블, 트리플 또는 pertubative 트리플 (CCSD, CCSDT, CCSD(T)) 결합 글러스터
  • 구성 상호 작용 (CISD, CISDT, CISDTQ)
  • 2차 근사 싱글 더블 결합 클러스터 (CC2)
  • 주별 다중참조 결합 클러스터 방법 (MRCC) (Brillouin-Wigner (BW-MRCC) 및 Mukherjee (Mk-MRCC) 접근법)
  • 분자 전자 구조의 더 많은 특징:
  • 전이 상태 검색, 구속 조건 및 최소 에너지 경로를 포함하는 형상 최적화 (Nudged Elastic Band (NEB) 및 Zero Temperature String 방법을 통해)
  • 진동 주파수
  • RHF, UHF, RDFT 또는 UDFT 참조를 갖는 여기상태를 위한 운동 방정식 (EOM)-CCSD,

    EOM-CCSDT, EOM-CCSD(T), CC2, 단일 배열 상호작용 (CIS), 시간종속 HF

    (TDHF) 및 TDDFT

  • 분석 구매를 포함하는, RHF, ROHF, DFT를 위한 도체와 유사한 스크리닝 모델 (COSMO)를

    사용하는 솔벤트화
    • 2 및 3 레이어 ONIOM 방법을 사용하는 하이브리드 계산
    • 스핀 궤도 위치를 통해 DFT 에 대한 스핀 프리 및 스핀 궤도 1 전자 Douglas-Kroll

      및 0차 정규 근사 (ZORA) 및 1 전자 스핀 궤도 효과를 통한 상대론적 효과 * 유사 포텐셜 평면파 전자 구조: - 분자, 액체, 결정체, 표면, 반도체 또는 금속을 계산하기 위한 유사 포텐셜 평면파

      (PSPW), Projector Augmented Wave (PAW) 또는 밴드 구조 방법 - 전환 상태 검색을 포함하는 기하/유닛 셀 최적화 - 진동 주파수 - LDA, PBE96, PBE0 교환 상관관계 가능성 (제한 및 제한되지 않음) - SIC, pert-OEP, Hartree-Fock, 및 하이브리드 기능 (제한 및 제한되지 않음) - 세미코어 교정을 갖는 Hamann, Troullier-Martins 및 Hartwigsen-Goedecker-Hutter

      평균 보존 유사 포텐셜 - 파동 함수, 밀도, 정전기 및 Wannier 플로팅 - 밴드 구조 및 상태 생성 밀도 * 제1원리 순이론 분자 역학 (CPMD): - 일정한 에너지 및 일정한 온도 역학 - 통합을 위한 Verlet 알고리즘 - 직교 좌표에 기하학 제약 조건 * 고전 분자 역학 (MD): - 단일 구성 에너지 평가 - 에너지 회소화 - 분자 역학 시뮬레이션 - 자유 에너지 시뮬레이션 (단일 및/또는 이중 토폴로지, 이중 와이드 샘플링, 및 분리 시프트 스케일링 옵션을 갖는 다단계 열역학적 섭동 (MSTP) 또는 다중설정 열역학 집적화 (MCIT) 방법) - 효과적인 쌍 전위, 1차 분극, 자가 일치 분극, 부드러운 입자 메쉬 Ewald (SPME),

      주기적인 경계 조건 및 SHAKE 제약 조건을 제공하는 Force 필드 * 혼합된 양자 고전: - 혼합된 양자 역학 및 분자 역학 (QM/MM) 최소화 및 분자 역학 시뮬레이션 - 그라디언트를 반환하는 양자 역학 방법 중에서 하나를 사용하는 양자 분자 역학 시뮬레이션.

Please cite: M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus and W.A. de Jong: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181(9):1477-1489 (2010)
Screenshots of package nwchem
package for nano-scale material simulations
Versions of package openmx
Debtags of package openmx:
fieldchemistry, physics
Popcon: 5 users (4 upd.)*
Newer upstream!
License: DFSG free

OpenMX (Open source package for Material eXplorer) is a program package for nano-scale material simulations based on density functional theories (DFT), norm-conserving pseudopotentials and pseudo-atomic localized basis functions. Since the code is designed for the realization of large-scale ab initio calculations on parallel computers, it is anticipated that OpenMX can be a useful and powerful tool for nano-scale material sciences in a wide variety of systems such as biomaterials, carbon nanotubes, magnetic materials, and nanoscale conductors.

Screenshots of package openmx
Electronic-Structure and Ab-Initio Molecular Dynamics Suite
Versions of package quantum-espresso
Debtags of package quantum-espresso:
Popcon: 16 users (10 upd.)*
Newer upstream!
License: DFSG free

Quantum ESPRESSO (formerly known as PWscf) is an integrated suite of computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving, ultrasoft, and PAW).

Features include:

  • Ground-state single-point and band structure calculations using plane-wave self-consistent total energies, forces and stresses
  • Separable norm-conserving and ultrasoft (Vanderbilt) pseudo-potentials, PAW (Projector Augmented Waves)
  • Various exchange-correlation functionals, from LDA to generalized-gradient corrections (PW91, PBE, B88-P86, BLYP) to meta-GGA, exact exchange (HF) and hybrid functionals (PBE0, B3LYP, HSE)
  • Car-Parrinello and Born-Oppenheimer Molecular Dynamics
  • Structural Optimization including transition states and minimum energy paths
  • Spin-orbit coupling and noncollinear magnetism
  • Response properties including phonon frequencies and eigenvectors, effective charges and dielectric tensors, Infrared and Raman cross-sections, EPR and NMR chemical shifts
  • Spectroscopic properties like K- and L1-edge X-ray Absorption Spectra (XAS) and electronic excitations
Please cite: P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395502 (2009)
*Popularitycontest results: number of people who use this package regularly (number of people who upgraded this package recently) out of 200793