Debian Med Project
Help us to see Debian used by medical practitioners and biomedical researchers! Join us on the Salsa page.
paquet Debian Med pour l'oncologie

Ce méta-paquet installera des outils qui peuvent être utiles pour la radiothérapie anticancéreuse.


For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:

If you discover a project which looks like a good candidate for Debian Med to you, or if you have prepared an unofficial Debian package, please do not hesitate to send a description of that project to the Debian Med mailing list

Links to other tasks

Debian Med Oncology packages

Official Debian packages with high relevance

plate-forme de recherche en radiothérapie
Versions of package dicompyler
Popcon: 4 users (2 upd.)*
Versions and Archs
License: DFSG free

Dicompyler est une plate-forme de recherche en radiothérapie, extensible et entièrement open source, basée sur la norme DICOM. Elle fonctionne comme un visionneur DICOM RT multi-plateforme.

Fonctionnalités :

  • import de fichiers Images CT, ensemble de structure DICOM RT, dose RT et plan RT ;
  • système de greffon extensible avec des greffons inclus :
    • visionneur d'image 2D avec surcouches dose et structure ;
    • visionneur d'histogrammes de volume de dose avec la possibilité d'analyser leurs paramètres ;
    • visionneur d'arborescence de données DICOM ;
    • service d'anonymat du patient.
Please cite: A. Panchal and R. Keyes: Dicompyler: An Open Source Radiation Therapy Research Platform with a Plugin Architecture. Medical Physics 37:3245 (2010)
Whole-slide imaging support for Orthanc (digital pathology)
Versions of package orthanc-wsi
Popcon: 49 users (1 upd.)*
Versions and Archs
License: DFSG free

Orthanc-WSI brings support of whole-slide imaging for digital pathology into Orthanc, the lightweight, RESTful Vendor Neutral Archive for medical imaging.

This package contains two command-line tools to convert whole-slide images to and from DICOM. Support for proprietary file formats is available through OpenSlide. The package also contains an Orthanc plugin to display such DICOM images by any standard Web browser. The implementation follows DICOM Supplement 145.

Please cite: Sebastien Jodogne: The Orthanc Ecosystem for Medical Imaging. J Digit Imaging (2018)
simulation model for breast cancer risk
Versions of package simrisc
Popcon: 1 users (0 upd.)*
Newer upstream!
License: DFSG free

SiMRiSC is simulation model for breast cancer screening. It was originally designed by Marcel Greuter around 2010, and then updated by Chris de Jonge in 2015. This current version is a complete rewrite of the original sources by Frank B. Brokken.

Please cite: Du Y, Sidorenkov G, Heuvelmans MA, Groen HJM, Vermeulen KM, Greuter MJW and de Bock GH: Cost-effectiveness of lung cancer screening with low-dose computed tomography in heavy smokers: a microsimulation modelling study. (PubMed,eprint) Breast 135:121-129 (2020)

Official Debian packages with lower relevance

core radiation therapy modules for DICOM / DICOM RT used by dicompyler
Versions of package python3-dicompylercore
Popcon: 0 users (0 upd.)*
Versions and Archs
License: DFSG free

This package provides a Python3 library of core radiation therapy modules for DICOM / DICOM RT used by dicompyler. It includes:

  • dicomparser: parse DICOM objects in an easy-to-use manner
  • dvh: Pythonic access to dose volume histogram (DVH) data
  • dvhcalc: Independent DVH calculation using DICOM RT Dose & RT Structure Set

Packaging has started and developers might try the packaging code in VCS

software tools for radiation therapy planning
Versions of package uw-prism
Versions and Archs
License: LLGPL
Debian package not available
Version: 1.5-2-1

The Prism project is a long term project to build software tools for radiation therapy planning, including artificial intelligence tools as well as manual simulation systems.

Please cite: I. J. Kalet, J. P. Jacky, M. M. Austin-Seymour, S. M. Hummel, K. J. Sullivan and J. M. Unger: Prism: a new approach to radiotherapy planning software. (PubMed,eprint) Int J Radiat Oncol Biol Phys. 36(2):451-61 (1996)

No known packages available

tools for radiotherapy treatment planning
License: needs to be clarified, registration required
Debian package not available

PLanUNC (PLUNC) is a portable, adaptable, and extensible set of software tools for radiotherapy treatment planning (RTP) that has been under active development in the Department of Radiation Oncology at the University of North Carolina (UNC) for approximately 20 years. In 1992, development work branched into separate paths at UNC (PLanUNC) and Sherouse Systems, Inc. (GRATISTM). The current UNC tools encompass the full range of RTP functions including image importing and processing, virtual simulation, dose calculation, plan evaluation, and planning for intensity modulated radiotherapy. PLanUNC source code and related software are licensed without fee to qualified facilities to support research involving new methods for planning and delivering radiation therapy, and to support RTP training for dosimetrists, physicists, radiation therapists, and radiation oncology residents.

*Popularitycontest results: number of people who use this package regularly (number of people who upgraded this package recently) out of 203033