Summary
Machine Learning
Debian Science - Machine Learning-pakker
Denne metapakke vil installere pakker nyttige for maskinlæring. Inkluderede
pakkeinterval går fra videnbaseret (ekspert) følgeslutningssystemer til
programimplementeringer for avanceret statistik, som dominerer nutidens
metoder.
Description
For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:
If you discover a project which looks like a good candidate for Debian Science
to you, or if you have prepared an unofficial Debian package, please do not hesitate to
send a description of that project to the Debian Science mailing list
Links to other tasks
|
Debian Science Machine Learning packages
Official Debian packages with high relevance
autoclass
Automatisk klassificering eller clustering
|
Versions of package autoclass |
Release | Version | Architectures |
bullseye | 3.3.6.dfsg.1-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 3.3.6.dfsg.1-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
sid | 3.3.6.dfsg.2-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 3.3.6.dfsg.2-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 3.3.6.dfsg.2-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 3.3.6.dfsg.1-1 | amd64,arm64,armhf,i386 |
jessie | 3.3.6.dfsg.1-1 | amd64,armel,armhf,i386 |
Debtags of package autoclass: |
field | mathematics |
interface | commandline |
role | program |
scope | utility |
use | organizing |
|
License: DFSG free
|
AutoClass løser problemet med automatisk opdagelse af klasser i data (også
kaldet clustering eller uovervåget indlæring) i modsætning til generering
af klassebeskrivelser fra mærkede eksempler (kaldet overvåget indlæring).
Det sigter på at opdage »naturlige« klasser i dataene. AutoClass kan
bruges på observationer af ting, der kan beskrives ved et antal egenskaber
uden at referere til andre ting. De dataværdier, der svarer til hver
egenskab er begrænset til enten at være numre eller elementer i et fast
symbolsæt. For numeriske data skal man angive målefejlen.
|
|
caffe-cpu
Hurtig, åben ramme for Deep Learning - metapakke
|
Versions of package caffe-cpu |
Release | Version | Architectures |
buster | 1.0.0+git20180821.99bd997-2 | amd64,arm64,armhf,i386 |
stretch | 1.0.0~rc4-1 | amd64,arm64,armel,i386,mips,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
Caffe er en dyb læringsramme lavet med omtanke for udtryk, hastighed og
modulopbygning. Programmet er udviklet af Berkeley AI Research Lab (BAIR)
og bidragsydere fra fællesskabet.
Denne metapakke henter CPU_ONLY-versionen af caffe:
* caffe-tools-cpu
Bemærk denne CPU_ONLY-version kan ikke sameksistere med CUDA-versionen.
|
|
gprolog
|
Versions of package gprolog |
Release | Version | Architectures |
bookworm | 1.4.5.0-3 | amd64,i386 |
sid | 1.4.5.0-3 | amd64,i386 |
jessie | 1.3.0-6.1 | amd64,i386 |
bullseye | 1.4.5.0-3 | amd64,i386 |
trixie | 1.4.5.0-3 | amd64,i386 |
Debtags of package gprolog: |
devel | compiler, interpreter, lang:prolog |
interface | commandline |
role | program |
scope | utility |
suite | gnu |
works-with | software:source |
|
License: DFSG free
|
GNU Prolog er en fri Prologkompiler med begrænsningsløsning over finitte
domæner (FD). GNU Prolog overholder hovedsagelig ISO-standarden og er en
del af Prolog Commons-initiativet.
Denne pakke indeholder kompileren og kørselstidssystemet for ISO-
standardversionen for GNU Prolog, inklusive implementeringen af
prototypemodulet.
|
|
libcv-dev
??? missing short description for package libcv-dev :-(
|
Versions of package libcv-dev |
Release | Version | Architectures |
jessie | 2.4.9.1+dfsg-1+deb8u1 | amd64,armel,armhf,i386 |
stretch-security | 2.4.9.1+dfsg1-2+deb9u1 | amd64,arm64,armel,armhf,i386 |
stretch | 2.4.9.1+dfsg1-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie-security | 2.4.9.1+dfsg-1+deb8u2 | amd64,armel,armhf,i386 |
upstream | 4.11.0 |
Debtags of package libcv-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
Please cite:
Gary Bradski and Adrian Kaehler:
Learning OpenCV: Computer Vision with the OpenCV Library
(2008)
|
|
libevocosm-dev
??? missing short description for package libevocosm-dev :-(
|
Versions of package libevocosm-dev |
Release | Version | Architectures |
jessie | 4.0.2-3 | amd64,armel,armhf,i386 |
stretch | 4.0.2-3.1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
Debtags of package libevocosm-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
|
|
libfann-dev
Udviklingsbiblioteker og teksthovedfiler for FANN
|
Versions of package libfann-dev |
Release | Version | Architectures |
bullseye | 2.2.0+ds-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 2.2.0+ds-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 2.2.0+ds-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 2.2.0+ds-8 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 2.2.0+ds-5 | amd64,arm64,armhf,i386 |
stretch | 2.2.0+ds-3 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 2.1.0~beta+dfsg-1 | amd64,armel,armhf,i386 |
Debtags of package libfann-dev: |
devel | lang:c, library |
role | devel-lib |
|
License: DFSG free
|
Fast Artificial Neural Network Library er et frit neuralt
netværksbibliotek, udviklet i åben kildekode, som implementerer flerlags
neurale netværk med kunstig intelligens i C og med understøttelse for både
fuldt forbundne og delvist forbundne netværk. Kørsel på flere platforme i
både faste og flydende heltal er understøttet. Biblioteket inkluderer en
ramme for nem håndtering af træningsdatasæt. Det er nemt at bruge,
alsidigt, veldokumenteret og hurtigt.
Denne pakke indeholder teksthovedfilerne og statiske biblioteker, som er
krævet for at udvikle libfann-programmer.
|
|
libga-dev
C++ Library of Genetic Algorithm Components
|
Versions of package libga-dev |
Release | Version | Architectures |
bookworm | 2.4.7-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 2.4.7-4 | amd64,arm64,armhf,i386 |
stretch | 2.4.7-4 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 2.4.7-3.1 | amd64,armel,armhf,i386 |
sid | 2.4.7-6 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 2.4.7-6 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 2.4.7-4 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
Debtags of package libga-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
GAlib contains a set of C++ genetic algorithm objects. The library
includes tools for using genetic algorithms to do optimization in any C++
program using any representation and genetic operators. The documentation
includes an extensive overview of how to implement a genetic algorithm as
well as examples illustrating customizations to the GAlib classes.
This package contains the development files.
|
|
liblinear-dev
Udviklingsbiblioteker og hovedfiler for LIBLINEAR
|
Versions of package liblinear-dev |
Release | Version | Architectures |
jessie | 1.8+dfsg-4 | amd64,armel,armhf,i386 |
stretch | 2.1.0+dfsg-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 2.1.0+dfsg-4 | amd64,arm64,armhf,i386 |
bullseye | 2.3.0+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 2.3.0+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 2.3.0+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 2.3.0+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
experimental | 2.43+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 2.4.8 |
Debtags of package liblinear-dev: |
devel | lang:c, lang:c++, library |
role | devel-lib |
|
License: DFSG free
|
LIBLINEAR er et bibliotek for læring af lineære klassifikatorer for
omfangsrige programmer. Biblioteket understøtter Support Vector Machines
(SVM) med L2-og L1-tab. Logistisk regression, flerklasseklassifikation og
også Linear Programming Machines (L1-regulerede SVM'er). Dets
beregningsmæssige kompleksitet skalerer lineært med antallet af
træningseksempler, hvilket gør det til et af de hurtigste SVM-løsere.
Denne pakke indeholder hovedfilerne og de statiske biblioteker.
|
|
libmlpack-dev
intuitive, fast, scalable C++ machine learning library (development libs)
|
Versions of package libmlpack-dev |
Release | Version | Architectures |
jessie | 1.0.10-1 | amd64,armel,armhf,i386 |
buster | 3.0.4-1 | amd64,arm64,armhf,i386 |
bullseye | 3.4.2-1 | amd64,arm64,i386,ppc64el,s390x |
trixie | 4.5.1-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 4.5.1-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
stretch | 2.1.1-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
This package contains the mlpack Library development files.
Machine Learning Pack (mlpack) is an intuitive, fast, scalable C++
machine learning library, meant to be a machine learning analog to
LAPACK. It aims to implement a wide array of machine learning
methods and function as a "swiss army knife" for machine learning
researchers.
|
|
libocas-dev
Udviklingsbiblioteker og teksthovedfiler for LIBOCAS
|
Versions of package libocas-dev |
Release | Version | Architectures |
bookworm | 0.97+dfsg-8 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 0.97+dfsg-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 0.97+dfsg-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 0.97+dfsg-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 0.97-1 | amd64,armel,armhf,i386 |
stretch | 0.97+dfsg-3 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 0.97+dfsg-5 | amd64,arm64,armhf,i386 |
Debtags of package libocas-dev: |
devel | lang:c, library |
role | devel-lib |
|
License: DFSG free
|
Dette bibliotek implementerer Optimized Cutting Plane Algorithm (OCAS) til
træning af lineære Support Vector Machine-klassifikatører (SVM) fra store
mængder data. Beregningsindsatsen for OCAS skalerer lineært med antallet
af træningseksempler. Det er en af de hurtigste SVM-løsere til løsning af
lineære og multiklasse L2-legaliserede SVM'er.
Denne pakke indeholder hovedfilerne og de statiske biblioteker.
|
|
libroot-math-mlp-dev
??? missing short description for package libroot-math-mlp-dev :-(
|
Versions of package libroot-math-mlp-dev |
Release | Version | Architectures |
jessie | 5.34.19+dfsg-1.2 | amd64,armel,armhf,i386 |
Debtags of package libroot-math-mlp-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
|
|
libroot-montecarlo-vmc-dev
??? missing short description for package libroot-montecarlo-vmc-dev :-(
|
Versions of package libroot-montecarlo-vmc-dev |
Release | Version | Architectures |
jessie | 5.34.19+dfsg-1.2 | amd64,armel,armhf,i386 |
Debtags of package libroot-montecarlo-vmc-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
|
|
libroot-tmva-dev
??? missing short description for package libroot-tmva-dev :-(
|
Versions of package libroot-tmva-dev |
Release | Version | Architectures |
jessie | 5.34.19+dfsg-1.2 | amd64,armel,armhf,i386 |
Debtags of package libroot-tmva-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
|
|
libshark-dev
??? missing short description for package libshark-dev :-(
|
Versions of package libshark-dev |
Release | Version | Architectures |
stretch | 3.1.3+ds1-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
|
|
libshogun-dev
Large Scale Machine Learning Toolbox
|
Versions of package libshogun-dev |
Release | Version | Architectures |
jessie | 3.2.0-7.3 | amd64,armel,armhf,i386 |
buster | 3.2.0-8 | amd64,arm64,armhf,i386 |
Debtags of package libshogun-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package
includes the developer files required to create stand-a-lone executables.
|
|
libsvm-dev
|
Versions of package libsvm-dev |
Release | Version | Architectures |
trixie | 3.24+ds-6 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
experimental | 3.25+ds-1~exp1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 3.24+ds-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 3.24+ds-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 3.21+ds-1.2 | amd64,arm64,armhf,i386 |
stretch | 3.21+ds-1.1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 3.12-1 | amd64,armel,armhf,i386 |
sid | 3.24+ds-6 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 3.35 |
Debtags of package libsvm-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
LIBSVM, a machine-learning library, is an easy-to-use package for
support vector classification, regression and one-class SVM. It
supports multi-class classification, probability outputs, and
parameter selection.
This package contains the development header files.
|
|
libtorch3-dev
State of the art machine learning library - development files
|
Versions of package libtorch3-dev |
Release | Version | Architectures |
jessie | 3.1-2.1 | amd64,armel,armhf,i386 |
stretch | 3.1-2.2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 3.1-2.2 | amd64,arm64,armhf,i386 |
Debtags of package libtorch3-dev: |
devel | library |
role | devel-lib |
|
License: DFSG free
|
Torch is a machine-learning library, written in C++. Its aim is to
provide the state-of-the-art of the best algorithms.
- Many gradient-based methods, including multi-layered perceptrons,
radial basis functions, and mixtures of experts. Many small "modules"
(Linear module, Tanh module, SoftMax module, ...) can be plugged
together.
- Support Vector Machine, for classification and regression.
- Distribution package, includes Kmeans, Gaussian Mixture Models,
Hidden Markov Models, and Bayes Classifier, and classes for speech
recognition with embedded training.
- Ensemble models such as Bagging and Adaboost.
- Non-parametric models such as K-nearest-neighbors, Parzen Regression
and Parzen Density Estimator.
This package is the Torch development package (header files and
static library.)
|
|
libvigraimpex-dev
Udviklingsfiler for C++-computervisionsbiblioteket
|
Versions of package libvigraimpex-dev |
Release | Version | Architectures |
trixie | 1.12.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 1.9.0+dfsg-10 | amd64,armel,armhf,i386 |
sid | 1.12.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.11.1+dfsg-11 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.11.1+dfsg-8 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 1.10.0+git20160211.167be93+dfsg1-2 | amd64,arm64,armhf,i386 |
stretch | 1.10.0+git20160211.167be93+dfsg-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
Debtags of package libvigraimpex-dev: |
devel | lang:c++, library |
role | devel-lib |
works-with | image, image:raster |
|
License: DFSG free
|
Vision med generiske algoritmer (VIGRA) er et computervisionbibliotek, som
placerer sit hovedfokus på fleksible algoritmer, da algoritmerne
repræsenterer den grundlægende viden indenfor dette felt. Biblioteket blev
som konsekvent bygget med brug af generisk programmering som introduceret
af Stepanov og Musser og eksemplicificeret i C++ Standard Template Library.
Ved at skrive nogle få adaptere (billediteratorer og accessorer) kan du
bruge VIGRA's algoritmer oven på dine datastrukturer, inden i dit miljø.
Denne pakke indeholder teksthovederne og udviklingsfilerne krævet for at
bygge programmer og pakker med brug af VIGRA.
|
|
lua-torch-graph
Graph Computation Package for Torch Framework
|
Versions of package lua-torch-graph |
Release | Version | Architectures |
buster | 0~20161121-g37dac07-3 | all |
|
License: DFSG free
|
This package provides graphical computation for Torch.
This package also ships a graphviz interface, you need not graphviz
to be able to use this library but, if you have it, you will be able to
display the graphs that you have created.
|
|
lua-torch-image
Image Load/Save Library for Torch Framework
|
Versions of package lua-torch-image |
Release | Version | Architectures |
buster | 0~20170420-g5aa1881-7 | amd64,armhf |
|
License: DFSG free
|
"image" is the Torch7 distribution package for processing images. It
contains a wide variety of functions divided into the following categories:
- Saving and loading images as JPEG, PNG, PPM and PGM;
- Simple transformations like translation, scaling and rotation;
- Parameterized transformations like convolutions and warping;
- Simple Drawing Routines like drawing text or a rectangle on an image;
- Graphical user interfaces like display and window;
- Color Space Conversions from and to RGB, YUV, Lab, and HSL;
- Tensor Constructors for creating Lenna, Fabio and Gaussian and
Laplacian kernels;
Note that unless specified otherwise, this package deals with images of
size nChannel x height x width .
|
|
lua-torch-nn
Neural Network Package for Torch Framework
|
Versions of package lua-torch-nn |
Release | Version | Architectures |
buster | 0~20171002-g8726825+dfsg-4 | all |
|
License: DFSG free
|
This package provides an easy and modular way to build and train
simple or complex neural networks using Torch Framework:
-
Modules are the bricks used to build neural networks.
Each are themselves neural networks, but can be combined with
other networks using containers to create complex neural networks:
-
Module: abstract class inherited by all modules.
- Containers: container classes.
- Transfer functions: non-linear functions.
- Simple layers: simple network layer like
Linear .
- Table layers: layers for manipulating
table s.
-
Convolution layers: several kinds of convolutions.
-
Criterions compute a gradient according to a given loss function
given an input and a target:
-
Criterions: a list of all criterions.
MSECriterion : the Mean Squared Error criterion used for regression;
-
ClassNLLCriterion : the Negative Log Likelihood criterion used for
classification.
-
Additional documentation:
-
Overview of the package essentials including modules, containers
and training.
- Training: how to train a neural network using optim.
- Testing: how to test your modules.
- Experimental Modules: a package containing experimental modules and
criteria.
This package is a core part of the Torch Framework.
|
|
lua-torch-nngraph
Neural Network Graph Package for Torch Framework
|
Versions of package lua-torch-nngraph |
Release | Version | Architectures |
buster | 0~20170208-g3ed3b9b-3 | all |
|
License: DFSG free
|
This package provides graphical computation for nn library in Torch.
The aim of this library is to provide users of nn package with tools to
easily create complicated architectures. Any given nn module is going
to be bundled into a graph node. The __call__ operator of an instance of
nn.Module is used to create architectures as if one is writing function
calls.
|
|
lua-torch-optim
Numeric Optimization Package for Torch Framework
|
Versions of package lua-torch-optim |
Release | Version | Architectures |
buster | 0~20171127-ga5ceed7-1 | all |
|
License: DFSG free
|
This package contains several optimization routines and a logger for Torch.
The following algorithms are provided:
- Stochastic Gradient Descent
- Averaged Stochastic Gradient Descent
- L-BFGS
- Congugate Gradients
- AdaDelta
- AdaGrad
- Adam
- AdaMax
- FISTA with backtracking line search
- Nesterov's Accelerated Gradient method
- RMSprop
- Rprop
- CMAES
All these algorithms are designed to support batch optimization as well
as stochastic optimization. It's up to the user to construct an objective
function that represents the batch, mini-batch, or single sample on which
to evaluate the objective.
This package provides also logging and live plotting capabilities via the
optim.Logger() function. Live logging is essential to monitor the
network accuracy and cost function during training and testing, for
spotting under- and over-fitting, for early stopping or just for monitoring
the health of the current optimisation task.
|
|
lua-torch-trepl
REPL Package for Torch Framework
|
Versions of package lua-torch-trepl |
Release | Version | Architectures |
buster | 0~20170619-ge5e17e3-7 | amd64,armhf,i386 |
|
License: DFSG free
|
A pure Lua REPL (Read,Eval,Print-Loop) for LuaJIT, with heavy
support for Torch types. It uses Readline for tab completion.
This package contains backend files to support the command line
frontend 'th'.
|
|
lua-torch-xlua
Lua Extension Package for Torch Framework
|
Versions of package lua-torch-xlua |
Release | Version | Architectures |
buster | 0~20160719-g41308fe-7 | all |
|
License: DFSG free
|
Lua is pretty compact in terms of built-in functionalities:
this package extends the table and string libraries,
and provide other general purpose tools (progress bar, ...).
This package ships a set of useful extensions to Lua for Torch Framework.
|
|
mcl
Markov Cluster-algoritmen
|
Versions of package mcl |
Release | Version | Architectures |
trixie | 22-282+ds-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 14-137+ds-9 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 14-137+ds-3 | amd64,arm64,armhf,i386 |
stretch | 14-137-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 14-137-1 | amd64,armel,armhf,i386 |
sid | 22-282+ds-3 | amd64,arm64,mips64el,ppc64el,riscv64,s390x |
sid | 22-282+ds-2 | armel,armhf,i386 |
bookworm | 22-282+ds-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
Debtags of package mcl: |
field | mathematics |
role | program |
|
License: DFSG free
|
Pakken MCL er en implementering af MCL-algoritmen, og tilbyder redskaber
til manipulation af matricer med spredning (på engelsk »sparse matrices«,
den essentielle datastruktur i MCL-algoritmen) og til at foretage
eksperimenter med klynger.
MCL anvendes på nuværende tidspunkt i videnskaber som biologi (detektering
af proteinfamilier, arvemasseforskning), datalogi (knudepunktklynger i
»vært til vært«-netværk) og lingvistik (tekstanalyse).
The package is enhanced by the following packages:
zoem
|
|
mrgingham
Chessboard finder for visual calibration routines
|
Versions of package mrgingham |
Release | Version | Architectures |
bookworm | 1.22-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Given an observed image containing a chessboard or a grid of circles, mrgingham
locates the board in the image, and precisely computes the location of the
chessboard corners (or circle centers). This is similar to the routines in
OpenCV, but is faster and more robust.
This package provides the user-facing tools
|
|
octave-ga
Genetisk optimeringskode for Octave
|
Versions of package octave-ga |
Release | Version | Architectures |
bullseye | 0.10.2-1 | all |
trixie | 0.10.4-1 | all |
jessie | 0.10.0-2 | all |
stretch | 0.10.0-2 | all |
bookworm | 0.10.3-2 | all |
buster | 0.10.0-6 | all |
sid | 0.10.4-1 | all |
Debtags of package octave-ga: |
devel | lang:octave, library |
role | devel-lib |
|
License: DFSG free
|
Denne pakke tilbyder funktionalitet til at arbejde med genetiske
algoritmer i Octave, et numerisk beregningsprogram. Pakken tilbyder ga()-
funktionen, som fungerer på samme måder for andre optimeringsfunktioner i
Octave.
Denne Octave-udvidelsespakke er en del af projektet Octave-Forge.
|
|
pgapack
??? missing short description for package pgapack :-(
|
Versions of package pgapack |
Release | Version | Architectures |
jessie | 1.1.1-3 | amd64,armel,armhf,i386 |
Debtags of package pgapack: |
field | mathematics |
|
License: DFSG free
|
|
|
python3-amp
Atomistic Machine-learning Package (python 3)
|
Versions of package python3-amp |
Release | Version | Architectures |
bookworm | 0.6.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 0.6.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 0.6.1-1 | amd64,arm64,armhf,i386 |
sid | 0.6.1-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 4878fc892f2cbc5cd9f29f7a367d7b05bdeb6ee9 |
|
License: DFSG free
|
Amp is an open-source package designed to easily bring machine-learning to
atomistic calculations. This project is being developed at Brown University in
the School of Engineering, primarily by Andrew Peterson and Alireza Khorshidi,
and is released under the GNU General Public License. Amp allows for the
modular representation of the potential energy surface, allowing the user to
specify or create descriptor and regression methods.
Amp is designed to integrate closely with the Atomic Simulation Environment
(ASE). As such, the interface is in pure python, although several
compute-heavy parts of the underlying code also have fortran versions to
accelerate the calculations. The close integration with ASE means that any
calculator that works with ASE ─ including EMT, GPAW, DACAPO, VASP, NWChem,
and Gaussian ─ can easily be used as the parent method.
This package provides the python 3 modules.
|
|
python3-fann2
Python 3-bindinger for FANN
|
Versions of package python3-fann2 |
Release | Version | Architectures |
stretch | 1.0.7-6 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
sid | 1.2.0+ds-4 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.2.0+ds-4 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.2.0+ds-4 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.2.0+ds-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 1.1.2+ds-1 | amd64,arm64,armhf,i386 |
|
License: DFSG free
|
Fast Artificial Neural Network Library er et frit neuralt
netværksbibliotek, udviklet i åben kildekode, som implementerer flerlags
neurale netværk med kunstig intelligens i C og med understøttelse for både
fuldt forbundne og delvist forbundne netværk.
Denne pakke indeholder Python 3-bindingerne for FANN.
|
|
python3-genetic
genetic algorithms in Python
|
Versions of package python3-genetic |
Release | Version | Architectures |
trixie | 0.1.1b+git20170527.98255cb-4 | all |
sid | 0.1.1b+git20170527.98255cb-4 | all |
bullseye | 0.1.1b+git20170527.98255cb-2 | all |
bookworm | 0.1.1b+git20170527.98255cb-3 | all |
|
License: DFSG free
|
Python3-genetic provides genetic algorithms for Python3, as often used
in artificial intelligence. It should be able to solve any problem that
consists in minimizing functions.
You'll find some demos using Genetic in this package, including an
impressively simple program that provides a solution to the well-known TSP
(Travelling Salesman Problem). Also, make sure to read
demo/genetic_demo_2.py for the list of the special "magic" genes that make
Genetic really fun and ... living !
|
|
python3-keras
deep learning framework running on Theano or TensorFlow
|
Versions of package python3-keras |
Release | Version | Architectures |
buster | 2.2.4-1 | all |
bullseye | 2.3.1+dfsg-3 | all |
|
License: DFSG free
|
Keras is a Python library for machine learning based on deep (multi-
layered) artificial neural networks (DNN), which follows a minimalistic
and modular design with a focus on fast experimentation.
Features of DNNs like neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes
are available in Keras a standalone modules which can be plugged together
as wanted to create sequence models or more complex architectures.
Keras supports convolutions neural networks (CNN, used for image
recognition resp. classification) and recurrent neural networks (RNN,
suitable for sequence analysis like in natural language processing).
It runs as an abstraction layer on the top of Theano (math expression
compiler) by default, which makes it possible to accelerate the computations
by using (GP)GPU devices. Alternatively, Keras could run on Google's
TensorFlow (not yet available in Debian).
|
|
python3-lasagne
deep learning library build on the top of Theano (Python3 modules)
|
Versions of package python3-lasagne |
Release | Version | Architectures |
stretch | 0.1+git20160728.8b66737-2 | all |
buster | 0.1+git20181019.a61b76f-1 | all |
|
License: DFSG free
|
Lasagne is a Python library to build and train deep (multi-layered) artificial
neural networks on the top of Theano (math expression compiler). In comparison
to other abstraction layers for that like e.g. Keras, it abstracts Theano as
little as possible.
Lasagne supports networks like Convolutional Neural Networks (CNN, mostly used
for image recognition resp. classification) and the Long Short-Term Memory type
(LSTM, a subtype of Recurrent Neural Networks, RNN).
This package contains the modules for Python 3.
|
|
python3-mdp
Modulært værktøjssæt for databehandling
|
Versions of package python3-mdp |
Release | Version | Architectures |
stretch | 3.5-1 | all |
jessie | 3.3-2 | all |
sid | 3.6-9 | all |
trixie | 3.6-9 | all |
bookworm | 3.6-2 | amd64,arm64,mips64el,ppc64el |
bullseye | 3.6-1.1 | all |
|
License: DFSG free
|
Databehandlingsramme til Python for bygning af komplekse
databehandlingsprogrammer ved at kombinere udbredte algoritmer for
maskinlæring til datakanaler og netværk. Implementerede algoritmer
inkluderer: Principal Component Analysis (PCA), Independent Component
Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature
Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis,
Fisher Discriminant Analysis (FDA) og gaussiske klassifikationer.
|
|
python3-mlpy
high-performance Python package for predictive modeling
|
Versions of package python3-mlpy |
Release | Version | Architectures |
bookworm | 3.5.0+ds-2 | all |
bullseye | 3.5.0+ds-1.2 | all |
sid | 3.5.0+ds-3 | all |
|
License: DFSG free
|
mlpy provides high level procedures that support, with few lines of
code, the design of rich Data Analysis Protocols (DAPs) for
preprocessing, clustering, predictive classification and feature
selection. Methods are available for feature weighting and ranking,
data resampling, error evaluation and experiment landscaping.
mlpy includes: SVM (Support Vector Machine), KNN (K Nearest
Neighbor), FDA, SRDA, PDA, DLDA (Fisher, Spectral Regression,
Penalized, Diagonal Linear Discriminant Analysis) for classification
and feature weighting, I-RELIEF, DWT and FSSun for feature weighting,
RFE (Recursive Feature Elimination) and RFS (Recursive Forward
Selection) for feature ranking, DWT, UWT, CWT (Discrete, Undecimated,
Continuous Wavelet Transform), KNN imputing, DTW (Dynamic Time
Warping), Hierarchical Clustering, k-medoids, Resampling Methods,
Metric Functions, Canberra indicators.
|
|
python3-opencv
Python 3-bindinger for computer vision-biblioteket
|
Versions of package python3-opencv |
Release | Version | Architectures |
bookworm | 4.6.0+dfsg-12 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 4.6.0+dfsg-14 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
experimental | 4.10.0+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
buster | 3.2.0+dfsg-6 | amd64,arm64,armhf,i386 |
bullseye | 4.5.1+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 4.6.0+dfsg-14 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 4.11.0 |
|
License: DFSG free
|
Denne pakke indeholder Python 3-bindinger for OpenCV-biblioteket (Open
Computer Vision).
Open Computer Vision Library er en samling af algoritmer og eksempelkode
for diverse computer vision-problemer. Biblioteket er kompatibelt med IPL
(Intels Image Processing Library) og, hvis tilgængeligt, kan det bruger IPP
(Intels Integrated Performance Primitives) for bedre ydelse.
OpenCV tilbyder datatyper og operatorer på lavt niveau, der kan flyttes
samt et sæt af funktioner på højt niveau for videooptagelse,
billedbehandling og analyse, strukturel analyse, bevægelsesanalyse og
objektsporing, objektgenkendelse, kamerakalibrering og 3D-rekonstruktion.
Please cite:
Gary Bradski and Adrian Kaehler:
Learning OpenCV: Computer Vision with the OpenCV Library
(2008)
|
|
python3-sklearn
Pythonmoduler for maskinlæring og dataundersøgelse - Python 3
|
Versions of package python3-sklearn |
Release | Version | Architectures |
buster | 0.20.2+dfsg-6 | all |
bullseye | 0.23.2-5 | all |
bookworm | 1.2.1+dfsg-1 | all |
trixie | 1.4.2+dfsg-7 | all |
sid | 1.4.2+dfsg-7 | all |
stretch | 0.18-5 | all |
upstream | 1.6.1 |
|
License: DFSG free
|
Scikit-learn er en samling af Pythonmoduler, der er relevante for
maskin/statistisk læring og dataundersøgelse. En ikke udtømmende liste over
inkluderet funktionalitet:
- Gaussianske blandede modeller
- Manifold-læring
- kNN
- SVM (via LIBSVM)
Denne pakke indeholder Python 3-versionen.
|
|
python3-statsmodels
Python 3-modul for estimering af statistiske modeller
|
Versions of package python3-statsmodels |
Release | Version | Architectures |
stretch-backports | 0.8.0-9~bpo9+1 | all |
buster | 0.8.0-9 | all |
bookworm | 0.13.5+dfsg-7 | all |
sid | 0.14.4+dfsg-1 | all |
trixie | 0.14.4+dfsg-1 | all |
bullseye | 0.12.2-1 | all |
|
License: DFSG free
|
Statsmodels Python 3-modul tilbyder klasser og funktioner for estimering af flere kategorier af statistiske modeller. Disse inkluderer i øjeblikket lineære regressionsmodeller, OLS, GLS, WLS og GLS med AR(p)-fejl, generaliserede lineære modeller for flere distributionsfamilier og M-estimatorer for robuste lineære modeller. En omfattende liste over resultatstatistik er tilgængelig for hvert estimeringsproblem.
Please cite:
Skipper Seabold and Josef Perktold:
Statsmodels: Econometric and statistical modeling with python
(eprint)
(2010)
|
|
python3-thinc
Praktisk maskinlæring for NLP i Python
|
Versions of package python3-thinc |
Release | Version | Architectures |
buster | 6.12.1-1 | amd64,arm64,armhf,i386 |
sid | 9.0.0-2 | amd64,arm64,armhf,i386,mips64el,riscv64,s390x |
bookworm | 8.1.7-1 | amd64,arm64,armhf,i386,mips64el,s390x |
|
License: DFSG free
|
Thinc er et maskinlæringsbibliotek, der driver spaCy https://spacy.io. Det har en kamptestet lineær model designet for store tynde læringsproblemer og en fleksibel neutral netværksmodel under udvikling for spaCy version 2.0 https://spacy.io/usage/v2.
Thinc er et praktisk værktøjssæt, der implementerer modeller, der følger arkitekturen »mbed, encode, attend, predict«. Sættet er designet til at være nemt at installere, effektiv i form af cpu-forbrug og optimeret for NLP og dyb læring med tekst - specielt, hierarkisk struktureret tekst og sekvenser med variabel længde.
|
|
python3-torch
Tensorer og dynamiske neurale netværk i Python - Pythongrænseflade
|
Versions of package python3-torch |
Release | Version | Architectures |
bookworm | 1.13.1+dfsg-4 | amd64,arm64,ppc64el,s390x |
sid | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
bullseye | 1.7.1-7 | amd64,arm64,armhf,ppc64el,s390x |
trixie | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
|
License: DFSG free
|
PyTorch er en Pythonpakke, der tilbyder to funktioner på højt niveau.
(1) Tensorberegning (som NumPy) med stærk GPU-acceleration
(2) Dybe neurale netværk bygget på et båndbaseret autograd-system
Du kan genbruge dine favoritpakker fra Python såsom NumPy, SciPy og Cython for at udvide PyTorch efter behov.
Dette er versionen kun for cpu af PyTorch (Pythongrænseflade).
Please cite:
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala:
|
|
python3-torch-sparse
PyTorch Extension-biblitoek for Optimized Autograd Sparse Matrix-operationer
|
Versions of package python3-torch-sparse |
Release | Version | Architectures |
trixie | 0.6.18-2 | amd64,arm64,ppc64el,riscv64,s390x |
sid | 0.6.18-2 | amd64,arm64,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Denne pakke består af et lille udvidelsesbibliotek for optimerede rumlige matrix-operationer med autograd-understøttelse.
Denne pakke installerer biblioteket for Python 3.
|
|
python3-vigra
Python 3-bindinger for C++ computer vision-biblioteket
|
Versions of package python3-vigra |
Release | Version | Architectures |
trixie | 1.12.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 1.11.1+dfsg-8 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.12.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.11.1+dfsg-11 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
Vision med generiske algoritmer (VIGRA) er et computervisionbibliotek, som
placerer sit hovedfokus på fleksible algoritmer, da algoritmerne
repræsenterer den grundlægende viden indenfor dette felt. Biblioteket blev
som konsekvent bygget med brug af generisk programmering som introduceret
af Stepanov og Musser og eksemplicificeret i C++ Standard Template Library.
Ved at skrive nogle få adaptere (billediteratorer og accessorer) kan du
bruge VIGRA's algoritmer oven på dine datastrukturer, inden i dit miljø.
Denne pakke eksporterer funktionaliteten for VIGRA-biblioteket til Python 3.
|
|
r-cran-amore
GNU R: A MORE flexible neural network package
|
Versions of package r-cran-amore |
Release | Version | Architectures |
bullseye | 0.2-16-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
jessie | 0.2-15-1 | amd64,armel,armhf,i386 |
stretch | 0.2-15-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 0.2-15-3 | amd64,arm64,armhf,i386 |
sid | 0.2-16-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 0.2-16-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 0.2-16-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
This package was born to release the TAO robust neural network
algorithm to the R users. It has grown and can be of interest for
the users wanting to implement their own training algorithms as well
as for those others whose needs lye only in the "user space".
|
|
r-cran-bayesm
GNU R-pakke til bayesiansk statistik
|
Versions of package r-cran-bayesm |
Release | Version | Architectures |
buster | 3.1-1-1 | amd64,arm64,armhf,i386 |
jessie | 2.2-5-1 | amd64,armel,armhf,i386 |
stretch | 3.0-2-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bullseye | 3.1-4+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 3.1-5+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 3.1-6+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 3.1-6+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
Debtags of package r-cran-bayesm: |
field | mathematics, statistics |
suite | gnu |
|
License: DFSG free
|
Pakken bayesm dækker mange vigtige modeller, der anvendes i markedsføring
og mikro-økonometri applikationer. Pakken indeholder:
- Bayes-regression (univariate eller multivariate dep var)
- Multinomial Logit (MNL) og Multinomial Probit (MNP)
- Multivariate Probit,
- Multivariate blandinger af Normals
- Hierarkisk lineære modeller med normale priors og kovariater
- Hierarkisk Multinomial Logits med blanding af normale priors og
kovariater
- Bayesiansk analyse af valg-baserede conjoint data
- Bayesian behandling af lineære instrumentale variable modeller
- Analyis af Multivariate Ordinal-undersøgelsesdata med skalaforbrugs-
heterogenitet (som i Rossi et al, JASA (01)).
For yderligere reference, se forfatternes bog, Bayesian Statistics And
Marketing af Allenby, McCulloch og Rossi.
|
|
r-cran-class
GNU R-pakke for klassifikation
|
Versions of package r-cran-class |
Release | Version | Architectures |
stretch | 7.3-14-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
trixie | 7.3-23-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 7.3-21-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 7.3-18-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 7.3-15-1 | amd64,arm64,armhf,i386 |
sid | 7.3-23-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 7.3-11-1 | amd64,armel,armhf,i386 |
Debtags of package r-cran-class: |
devel | lang:r |
role | shared-lib |
science | calculation, modelling |
use | analysing |
|
License: DFSG free
|
Pakken class tilbyder funktioner og datasæt til at understøtte kapitel 12
om »Klassifikation« i bogen »Modern Applied Statistics with S« (4. udgave)
af W.N. Veneables og B.D. Ripley. Den følgende adresse tilbyder yderligere
detaljer om bogen: http://www.stats.ox.ac.uk/pub/MASS4
|
|
r-cran-cluster
GNU R-pakke for klyngeanalyse af Rousseeuw et al
|
Versions of package r-cran-cluster |
Release | Version | Architectures |
bookworm | 2.1.4-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 2.0.5-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 1.15.3-1 | amd64,armel,armhf,i386 |
trixie | 2.1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
buster | 2.0.7-1-1 | amd64,arm64,armhf,i386 |
sid | 2.1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 2.1.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
Debtags of package r-cran-cluster: |
devel | lang:r, library |
field | statistics |
role | app-data |
suite | gnu |
|
License: DFSG free
|
Denne pakke tilbyder funktioner og datasæt for klyngeanalyse oprindelig
skrevet af Peter Rousseeuw, Anja Struyf og Mia Hubert.
Denne pakke er del af et sæt af pakker, som »anbefales« af R Core, og
leveres med kildeudgivelser via opstrøm af R.
|
|
r-cran-gbm
GNU R-pakke der tilbyder Generalized Boosted Regression Models
|
Versions of package r-cran-gbm |
Release | Version | Architectures |
buster | 2.1.5-1 | amd64,arm64,armhf,i386 |
bullseye | 2.1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 2.2.2-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
stretch | 2.1.1-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bookworm | 2.1.8.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
jessie | 2.1-1 | amd64,armel,armhf,i386 |
|
License: DFSG free
|
Denne pakke implementerer udvidelser til Freund og Schapires AdaBoost-algoritme og Friedmans gradientforstærkende maskine. Omfatter som minimum regressionsmetoder for mindste kvadrater, absolut tab, t-fordelingstab, kvantilregression, logistisk, multinomial logistik, Poisson, Cox-proportional fare med delvis sandsynlighed, AdaBoost-eksponentielt tab, Huberiseret hinge-tab og læring af at bedømme målinger (LambdaMart).
|
|
r-cran-mass
GNU R-pakke med Venables og Ripleys MASS
|
Versions of package r-cran-mass |
Release | Version | Architectures |
stretch | 7.3-45-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
sid | 7.3-64-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 7.3-53.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 7.3-51.1-1 | amd64,arm64,armhf,i386 |
bookworm | 7.3-58.2-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
jessie | 7.3-34-1 | amd64,armel,armhf,i386 |
trixie | 7.3-64-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
Debtags of package r-cran-mass: |
devel | lang:r |
field | statistics |
suite | gnu |
|
License: DFSG free
|
Pakken MASS tilbyder funktioner og datasæt som understøtter bogen »Modern
Applied Statistics with S« (4. udgave) af W. N. Venables og B. D. Ripley.
Den følgende adresse oplyser flere detaljer om bogen:
Adresse: http://www.stats.ox.ac.uk/pub/MASS4
The package is enhanced by the following packages:
r-cran-pscl
|
|
r-cran-mcmcpack
R-rutiner for Markov-kæde Monte Carlo-modelestimering
|
Versions of package r-cran-mcmcpack |
Release | Version | Architectures |
trixie | 1.7-0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
buster | 1.4-4-1 | amd64,arm64,armhf,i386 |
stretch | 1.3-8-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.5-0-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 1.6-3-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.7-0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 1.3-3-1 | amd64,armel,armhf,i386 |
upstream | 1.7-1 |
Debtags of package r-cran-mcmcpack: |
devel | lang:r, library |
field | statistics |
role | app-data |
suite | gnu |
|
License: DFSG free
|
Dette er et sæt af rutiner for GNU R, som implementerer diverse
statistiske og økonometriske modeller, der bruger Markov-kæde Monte
Carlo-estimering (MCMC), som giver mulighed for at »løse« modeller, som
ellers ville være umedgørlige med traditionelle teknikker, specielt
problemer indenfor bayesiansk statistik (hvor en eller flere »priors«
bruges som en del af estimeringsproceduren, i stedet for en antagelse om
uvidenhed om »sande« punktskøn), skønt MCMC også kan anvendes til at løse
statistiske problemer indenfor hyppighed med uinformative »priors«.
MCMC-teknikker foretrækkes også over direkte estimering, når der er
manglende data.
I øjeblikket er et antal økologiske inferensrutiner (EI) implementeret (for
estimering af attributter eller opførsel på individniveau fra opsamlede
data, såsom valgte afkast eller optællingsresultater) samt
som modeller for traditionelle lineære panel- og tværsnitsdata, nogle
visualiseringsrutiner for EI-diagnostik, to post-response (eller
ideal-punkts estimering) teorimodeller, metrisk, ordenstal, og blandet
respons faktoranalyse, og modeller for Gaussian- (lineær) og
Poisson-regression, logistisk regression (eller logit), og binære og
ordinal-svar probit-modeller.
De foreslåede pakker (r-cran-bayesm, -eco og -mnp) indeholder yderligere
modeller, som kan være nyttige for dem interesseret i denne pakke.
|
|
r-cran-metrics
GNU R evaluation metrics for machine learning
|
Versions of package r-cran-metrics |
Release | Version | Architectures |
bullseye | 0.1.4-2 | all |
buster | 0.1.4-1 | all |
bookworm | 0.1.4-2 | all |
trixie | 0.1.4-2 | all |
sid | 0.1.4-2 | all |
|
License: DFSG free
|
An implementation of evaluation metrics in R that are commonly
used in supervised machine learning. It implements metrics for
regression, time series, binary classification, classification,
and information retrieval problems. It has zero dependencies and
a consistent, simple interface for all functions.
|
|
r-cran-mlbench
GNU R-maskinlæring af sammenligningsproblemer
|
Versions of package r-cran-mlbench |
Release | Version | Architectures |
trixie | 2.1-5-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 2.1-3-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 2.1-3-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 2.1-5-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
stretch | 2.1-1-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 2.1-1-3 | amd64,arm64,armhf,i386 |
upstream | 2.1-6 |
|
License: DFSG free
|
Denne GNU R-pakke tilbyder en samling af kunstige og virkelige sammenligningsproblemer for maskinlæring, inklusive f.eks. flere datasæt fra UCI-arkivet.
|
|
r-cran-mlr
Machine learning in GNU R
|
Versions of package r-cran-mlr |
Release | Version | Architectures |
bullseye | 2.18.0+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch-backports | 2.13-1~bpo9+1 | amd64 |
buster | 2.13-1 | amd64,arm64,armhf,i386 |
bookworm | 2.19.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 2.19.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 2.19.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 2.19.2 |
|
License: DFSG free
|
Interface to a large number of classification and regression
techniques, including machine-readable parameter descriptions. There is
also an experimental extension for survival analysis, clustering and
general, example-specific cost-sensitive learning. Generic resampling,
including cross-validation, bootstrapping and subsampling. Hyperparameter
tuning with modern optimization techniques, for single- and multi-objective
problems. Filter and wrapper methods for feature selection. Extension of
basic learners with additional operations common in machine learning, also
allowing for easy nested resampling. Most operations can be parallelized.
|
|
r-cran-mnp
GNU R-pakke for tilpasning af multinomial probit-modeller (MNP)
|
Versions of package r-cran-mnp |
Release | Version | Architectures |
bookworm | 3.1-3-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 3.1-4-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 3.1-4-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 2.6-4-1 | amd64,armel,armhf,i386 |
stretch | 2.6-4-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 3.1-0-2 | amd64,arm64,armhf,i386 |
bullseye | 3.1-1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 3.1-5 |
Debtags of package r-cran-mnp: |
devel | lang:r, library |
field | statistics |
role | app-data |
suite | gnu |
|
License: DFSG free
|
MNP er en R-pakke som tilpasser Bayesian Multinomial Probit-modeller (MNP)
via Markov chain Monte Carlo (MCMC). Sammen med den gængse multinomial
probit-model, så kan den også tilpasse modeller med forskellige valgsæt for
hver observation og fuldstændig eller delvis ordning af alle tilgængelige
alternativer. Estimeringen er baseret på den effektive marginal
algoritme for dataforøgning, som er udviklet af Imai og van Dyk (2004).
|
|
r-cran-msm
GNU R Multi-state Markov og skjulte Markovmodeller i sammenhængende tid
|
Versions of package r-cran-msm |
Release | Version | Architectures |
jessie | 1.4-2 | amd64,armel,armhf,i386 |
sid | 1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.7-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.6.8-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 1.6.6-2 | amd64,arm64,armhf,i386 |
stretch | 1.6.4-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
upstream | 1.8.2 |
Debtags of package r-cran-msm: |
interface | commandline |
role | program |
|
License: DFSG free
|
Funktioner for tilpasning af generel Markov i sammenhængende tid og skjulte
Markov flertilstandsmodeller til data i længderetningen. Både
overgangsrater for Markov og den skjulte Markov-resultatproces kan
modelleres i form af kovariater. Et udvalg af observationsskemaer er
understøttet, inklusive processer observeret på arbitrære tidspunkter,
fuldstændig-observerede processer, og censorerede tilstande.
|
|
r-cran-tgp
GNU R Bayesian treed Gaussian process models
|
Versions of package r-cran-tgp |
Release | Version | Architectures |
bullseye | 2.4-17-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
jessie | 2.4-9-1 | amd64,armel,armhf,i386 |
buster | 2.4-14-4 | amd64,arm64,armhf,i386 |
trixie | 2.4-23-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 2.4-23-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
stretch | 2.4-14-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bookworm | 2.4-21-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
Bayesian nonstationary, semiparametric nonlinear regression and design by
treed Gaussian processes (GPs) with jumps to the limiting linear model (LLM).
Special cases also implemented include Bayesian linear models, CART, treed
linear models, stationary separable and isotropic GPs, and GP single-index
models. Provides 1-d and 2-d plotting functions (with projection and slice
capabilities) and tree drawing, designed for visualization of tgp-class
output. Sensitivity analysis and multi-resolution models are supported.
Sequential experimental design and adaptive sampling functions are also
provided, including ALM, ALC, and expected improvement. The latter supports
derivative-free optimization of noisy black-box functions.
|
|
root-system
??? missing short description for package root-system :-(
|
Versions of package root-system |
Release | Version | Architectures |
jessie | 5.34.19+dfsg-1.2 | all |
Debtags of package root-system: |
field | physics |
|
License: DFSG free
|
|
|
scilab-ann
??? missing short description for package scilab-ann :-(
|
Versions of package scilab-ann |
Release | Version | Architectures |
jessie | 0.4.2.4-1 | all |
stretch | 0.4.2.4-1 | all |
Debtags of package scilab-ann: |
devel | library |
role | devel-lib, shared-lib |
|
License: DFSG free
|
|
|
torch-core-free
Scientific Computing Framework For Luajit - grundkomponenter
|
Versions of package torch-core-free |
Release | Version | Architectures |
buster | 20171127 | amd64,armhf |
|
License: DFSG free
|
Torch er en videnskabelig beregningsramme med bred understøttelse for
maskinlæringsalgoritmer som sætter GPU'er først. Rammen er nem at bruge
og effektivt, takket være et nemt og hurtigt skriptsprog, LuaJIT og en
underliggende C/CUDA-implementering.
Et overblik over grundfunktioner:
- en funktionsrig N-dimensionel tabel
- masser af rutiner for indeksering, opdeling, transposing, ...
- imponerende grænseflade til C, via LuaJIT
- lineær algebrarutiner
- neuralt netværk og energibaserede modeller
- numeriske optimeringsrutiner
- Hurtig og effektiv GPU-understøttelse
- Kan indlejres, med porte til iOS-, Android- og FPGA-motorer
Formålet med Torch er at have maksimal fleksibilitet og hastighed i
bygning af dine videnskabelige algoritmer mens processen er ekstrem
simpel. Torch har et stort økosystem af fællesskabsdrevne pakker i
maskinlæring, computervision, signalbehandling, parallel behandling,
billede, video, lyd og netværk blandt andre og bygget oven på Lua-
fællesskabet.
I hjertet af Torch er det populære neurale netværk og
optimeringsbiblioteker som er simple at bruge, mens de har maksimal
fleksibilitet i implementering af komplekse neurale netværkstopologier. Du
kan bygge arbitrære grafer over neurale netværk og parallelisere dem over
CPu'er og GPU'er på en effektiv måde.
Denne pakke er en metapakke, som henter de følgende grundlæggende og frie
moduler for dig: cwrap, paths, sys, xlua, torch7, nn, graph, nngraph,
optim, sundown, dok, trepl, image.
Bemærk at cutorch (CUDA-motor for torch) og cunn (CUDA-motor for neuralt
netværk) ikke er til stede i denne metapakke - de vil blive medtaget i
metapakken torch-core-contrib engang i fremtiden.
|
|
toulbar2
Præcis kombinatorisk optimering for grafiske modeller
|
Versions of package toulbar2 |
Release | Version | Architectures |
buster | 1.0.0+dfsg3-2 | amd64,arm64,armhf,i386 |
trixie | 1.2.1+dfsg-0.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.1.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.1.1+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.2.1+dfsg-0.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Toulbar2 er et præcist diskret optimeringsværktøj for grafiske modeller
såsom Cost Function Networks, Markov Random Fields, Weighted Constraint
Satisfaction Problems og Bayesian Nets.
|
|
vowpal-wabbit
??? missing short description for package vowpal-wabbit :-(
|
Versions of package vowpal-wabbit |
Release | Version | Architectures |
jessie | 7.3-1.1 | amd64,armel,armhf,i386 |
Debtags of package vowpal-wabbit: |
interface | commandline |
role | program |
scope | utility |
|
License: DFSG free
|
|
|
weka
Algoritmer for maskinlæring for dataindekseringsopgaver
|
Versions of package weka |
Release | Version | Architectures |
sid | 3.6.14-4 | all |
buster | 3.6.14-1 | all |
trixie | 3.6.14-4 | all |
bookworm | 3.6.14-3 | all |
jessie | 3.6.11-1 | all |
bullseye | 3.6.14-2 | all |
stretch | 3.6.14-1 | all |
upstream | 3.8.6 |
Debtags of package weka: |
field | statistics |
interface | commandline, x11 |
role | program |
science | calculation |
scope | utility |
use | analysing, calculating |
works-with | db, text |
x11 | application |
|
License: DFSG free
|
Weka er en samling af algoritmer for maskinlæring i Java, som enten kan
bruges fra kommandolinjen eller kaldes fra din egen javakode. Weka er også
velegnet for udvikling af ny maskinlæringsskemaer.
Implementerede skemaer dækker beslutningstræ-induktorer, regeltilegnelse,
modeltræ-generatorer, understøtter vektormaskiner, lokalt vægtet
regression, instansbaseret læring, »bagging«, »boosting« og stabling
(»stacking«). Også inkluderet er klyngemetoder og en tilegnelse af
associationsregler. Udover reelle læringsskemaer indeholder Weka også en
stor række af værktøjer, som kan bruges for præbehandling af datasæt.
Denne pakke indeholder de binære filer og eksempler.
|
|
yap
??? missing short description for package yap :-(
|
Versions of package yap |
Release | Version | Architectures |
stretch | 6.2.2-6 | amd64,arm64,armel,armhf,i386 |
jessie | 6.2.2-2 | amd64,armel,armhf,i386 |
Debtags of package yap: |
devel | compiler, interpreter, lang:prolog |
role | program |
|
License: DFSG free
|
|
|
Official Debian packages with lower relevance
ask
Adaptive Sampling Kit for store eksperimentelle rum
|
Versions of package ask |
Release | Version | Architectures |
stretch | 1.1.1-1 | all |
jessie | 1.0.1-2 | all |
buster | 1.1.1-3 | all |
|
License: DFSG free
|
Adaptive Sampling Kit (ASK) er et værktøjssæt for sampling af store
eksperimentelle rum. Når rummet er lille, kan svaret måles for hvert punkt
i rummet. Når rummet er stort, er en omfattende måling enten ikke mulig i
form af kørselstid eller simpelthen ikke praktisk. ASK forsøger at finde en
god tilnærmelse for svaret ved kun at sample en lille del af rummet. ASK
har flere aktive læringsalgoritmer til at prioritere undersøgelsen af de
interessante dele af det eksperimentelle rum.
|
|
libdlib-dev
C++ toolkit for machine learning and computer vision - development
|
Versions of package libdlib-dev |
Release | Version | Architectures |
stretch | 18.18-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bullseye | 19.10-3.1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 19.10-3 | amd64,arm64,armhf,i386 |
bookworm | 19.24+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 19.24.6+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 19.24.6+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Dlib is a general purpose cross-platform open source software library written
in the C++ programming language. It now contains software components for
dealing with networking, threads, graphical interfaces, complex data
structures, linear algebra, statistical machine learning, image processing,
data mining, XML and text parsing, numerical optimization, Bayesian networks,
and numerous other tasks.
This package contains the development headers.
|
|
libdlpack-dev
Open In Memory Tensor Structure
|
Versions of package libdlpack-dev |
Release | Version | Architectures |
bullseye | 0.0~git20200217.3ec0443-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 1.0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 0.6-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 1.0rc |
|
License: DFSG free
|
DLPack is an open in-memory tensor structure to for sharing tensor among
frameworks. DLPack enables
- Easier sharing of operators between deep learning frameworks.
- Easier wrapping of vendor level operator implementations, allowing
collaboration when introducing new devices/ops.
- Quick swapping of backend implementations, like different version of BLAS
- For final users, this could bring more operators, and possibility of mixing
usage between frameworks.
DLPack do not intend to implement of Tensor and Ops, but instead use this as
common bridge to reuse tensor and ops across frameworks.
|
|
libfannj-java
FannJ - en Javabinding til Fast Artificial Neural Network (FANN) C-biblioteket
|
Versions of package libfannj-java |
Release | Version | Architectures |
bookworm | 0.7-1 | all |
jessie | 0.3-1 | all |
stretch | 0.3-1 | all |
trixie | 0.7-1 | all |
sid | 0.7-1 | all |
buster | 0.3-2 | all |
bullseye | 0.3-2 | all |
|
License: DFSG free
|
Brug FannJ hvis du har en eksisterende ANN fra FANN-projektet (libfann2),
som du ønsker at tilgå fra Java. Der er flere værktøjer for den grafiske
brugerflade, som vil hjælpe dig med at oprette og træne en ANN.
|
|
libfclib-dev
read and write problems from the Friction Contact Library (headers)
|
Versions of package libfclib-dev |
Release | Version | Architectures |
buster | 3.0.0+dfsg-2 | amd64,arm64,armhf,i386 |
bookworm | 3.1.0+dfsg-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 3.1.0+dfsg-3 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 3.1.0+dfsg-3 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 3.1.0+dfsg-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
fclib is an open source collection of Frictional Contact (FC)
problems stored in a specific HDF5 format, and an open source light
implementation of Input/Output functions in C Language to read and
write problems.
The goal of this work is to set up a collection of 2D and 3D
Frictional Contact (FC) problems in order to set up a list of
benchmarks; provide a standard framework for testing available and
new algorithms; and share common formulations of problems in order to
exchange data.
Fclib is an open-source scientific software primarily targeted at
modeling and simulating nonsmooth dynamical systems
This package includes the libfclib development headers.
|
|
libmkldnn-dev
Intel Math Kernel Library for Deep Neural Networks (dev)
|
Versions of package libmkldnn-dev |
Release | Version | Architectures |
buster | 0.17.4-1 | amd64 |
|
License: DFSG free
|
Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) is
an open source performance library for deep learning applications. The library
accelerates deep learning applications and framework on Intel(R) architecture.
Intel(R) MKL-DNN contains vectorized and threaded building blocks which you
can use to implement deep neural networks (DNN) with C and C++ interfaces.
DNN functionality optimized for Intel architecture is also included in
Intel(R) Math Kernel Library (Intel(R) MKL). API in this implementation
is not compatible with Intel MKL-DNN and does not include certain new and
experimental features.
One can choose to build Intel MKL-DNN without binary dependency. The resulting
version will be fully functional, however performance of certain convolution
shapes and sizes and inner product relying on SGEMM function may be suboptimal.
This package contains the header files, and symbol links to the shared object.
|
|
libmrgingham-dev
Chessboard finder for visual calibration routines
|
Versions of package libmrgingham-dev |
Release | Version | Architectures |
trixie | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.22-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
Given an observed image containing a chessboard or a grid of circles, mrgingham
locates the board in the image, and precisely computes the location of the
chessboard corners (or circle centers). This is similar to the routines in
OpenCV, but is faster and more robust.
This package provides the development C++ libraries
|
|
libxgboost-predictor-java
Java implementation of XGBoost predictor for online prediction tasks
|
Versions of package libxgboost-predictor-java |
Release | Version | Architectures |
bookworm | 0.3.1+dfsg-2 | all |
trixie | 0.3.1+dfsg-2 | all |
sid | 0.3.1+dfsg-2 | all |
|
License: DFSG free
|
XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable. It implements machine learning
algorithms under the Gradient Boosting framework. XGBoost provides a parallel
tree boosting (also known as GBDT, GBM) that solve many data science problems
in a fast and accurate way. The same code runs on major distributed
environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond
billions of examples.
|
|
libxsmm-dev
Bibliotek for matrix-operationer og dyb lærings-primitiver
|
Versions of package libxsmm-dev |
Release | Version | Architectures |
bookworm | 1.17-2 | amd64 |
trixie | 1.17-4 | amd64 |
sid | 1.17-4 | amd64 |
|
License: DFSG free
|
LIBXSMM er et bibliotek målrettet Intel Architecture for specialiserede
tætte og tynde matrixoperationer og dyb lærings-primitiver.
Denne pakke indeholder værktøjerne, de statiske biblioteker og teksthovedfilerne.
|
|
python3-hdmedians
Høj-dimensionelle medianer i Python 3
|
Versions of package python3-hdmedians |
Release | Version | Architectures |
buster | 0.13~git20171027.8e0e9e3-1 | amd64,arm64,armhf,i386 |
trixie | 0.14.2-5.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 0.14.2-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 0.14.1-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 0.14.2-5.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Diverse definitioner for en høj-dimensionel median findes og denne Pythonpakke tilbyder et antal hurtige implementeringer af disse definitioner. Medianer er ekstremt nyttige på grund af deres høje nedbrudspunkt (op til 50 % forurening) og har et antal pæne anvendelser indenfor maskinlæring, computersyn og høj-dimensionel statistik.
Denne pakke har i øjeblikket implementeringer af medoid og geometrisk median med understøttelse for manglende data via NaN.
|
|
python3-imblearn
Bibliotek der tilbyder teknikker til resampling
|
Versions of package python3-imblearn |
Release | Version | Architectures |
bullseye | 0.7.0-6 | all |
sid | 0.12.4-1 | all |
bookworm | 0.10.0-1 | all |
trixie | 0.12.4-1 | all |
upstream | 0.13.0 |
|
License: DFSG free
|
Imbalanced-learn er en Pythonpakke, der tilbyder et antal teknikker til resampling ofte brugt i datasæt, der viser stærk mellem-klasse ubalance.
Er kompatibel med scikit-learn og er en del af scikit-learn-contrib-projekterne.
|
|
python3-liac-arff
Bibliotek til at læse og skrive ARFF-filer i Python
|
Versions of package python3-liac-arff |
Release | Version | Architectures |
trixie | 2.5.0-6 | all |
sid | 2.5.0-6 | all |
bookworm | 2.5.0-3 | all |
bullseye | 2.5.0-1 | all |
|
License: DFSG free
|
Modulet liac-arff implementerer funktioner til at læse og skrive ARFF-filer i Python. Det blev oprettet i Connectionist Artificial Intelligence Laboratory (LIAC), der foregår på Federal University of Rio Grande do Sul (UFRGS), i Brasilien.
ARFF (Attribute-Relation File Format) er et filformat specifikt oprettet til at beskrive datasæt, der ofte bruges til eksperimenter indenfor maskinlæring og programmer. Dette filformat blev oprettet til brug i WEKA, det bedste repræsentative program for automatiserede eksperimenter indenfor maskinlæring.
|
|
python3-mrgingham
Chessboard finder for visual calibration routines
|
Versions of package python3-mrgingham |
Release | Version | Architectures |
bookworm | 1.22-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.24-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Given an observed image containing a chessboard or a grid of circles, mrgingham
locates the board in the image, and precisely computes the location of the
chessboard corners (or circle centers). This is similar to the routines in
OpenCV, but is faster and more robust.
This package provides the Python interfaces
|
|
science-numericalcomputation
Debian Science Numerical Computation-pakker
|
Versions of package science-numericalcomputation |
Release | Version | Architectures |
jessie | 1.4 | all |
stretch | 1.7 | all |
buster | 1.10 | all |
sid | 1.14.7 | all |
bullseye | 1.14.2 | all |
trixie | 1.14.7 | all |
bookworm | 1.14.5 | all |
Debtags of package science-numericalcomputation: |
devel | lang:lisp |
role | metapackage, shared-lib |
|
License: DFSG free
|
Denne metapakke vil installere Debian Science-pakker nyttige til numerisk
beregning. Pakkerne tilbyder en tabelorienteret beregning og et
visualiseringssystem til videnskabelig beregning og dataanalyse. Disse
pakker svarer til kommercielle systemer såsom Matlab og IDL.
|
|
science-statistics
Debians videnskabelige statistikpakker
|
Versions of package science-statistics |
Release | Version | Architectures |
jessie | 1.4 | all |
buster | 1.10 | all |
bullseye | 1.14.2 | all |
stretch | 1.7 | all |
bookworm | 1.14.5 | all |
trixie | 1.14.7 | all |
sid | 1.14.7 | all |
Debtags of package science-statistics: |
role | metapackage |
suite | debian |
|
License: DFSG free
|
Denne metapakke er en del af Debians Pure Blend »Debian Science« og
installerer pakker relateret til statistik. Denne opgave er en generel
opgave, som kan være nyttig for videnskabelig arbejde. Den afhænger af en
masse R-pakker samt andre værktøjer, som er nyttige til at udføre
statistik. Derudover foreslås Videnskabelig matematik-opgaven som valgfri
installation af alle matematikrelaterede programmer.
|
|
science-typesetting
Debian Science - opsætningspakker
|
Versions of package science-typesetting |
Release | Version | Architectures |
sid | 1.14.7 | all |
trixie | 1.14.7 | all |
bookworm | 1.14.5 | all |
stretch | 1.7 | all |
bullseye | 1.14.2 | all |
jessie | 1.4 | all |
buster | 1.10 | all |
Debtags of package science-typesetting: |
role | metapackage |
suite | debian |
|
License: DFSG free
|
Denne metapakke vil installere Debian Science-pakker relateret til
opsætning. Du er måske også interesseret i deb-mærket use::typesetting.
|
|
Debian packages in contrib or non-free
caffe-cuda
Fast, open framework for Deep Learning (Meta)
|
Versions of package caffe-cuda |
Release | Version | Architectures |
buster | 1.0.0+git20180821.99bd997-2 (contrib) | amd64 |
stretch | 1.0.0~rc4-1 (contrib) | amd64 |
|
License: DFSG free, but needs non-free components
|
Caffe is a deep learning framework made with expression, speed,
and modularity in mind. It is developed by the Berkeley AI Research
Lab (BAIR) and community contributors.
This metapackage pulls CUDA version of caffe:
Note, this CUDA version cannot co-exist with the CPU_ONLY version.
|
Packaging has started and developers might try the packaging code in VCS
spacy
Industrial-strength Natural Language Processing (NLP)
|
Versions of package spacy |
Release | Version | Architectures |
VCS | 2.2.3-1 | all |
|
License: MIT
Debian package not available
Version: 2.2.3-1
|
spaCy is a library for advanced Natural Language Processing in Python
and Cython. It’s built on the very latest research, and was designed
from day one to be used in real products. spaCy comes with pre-trained
statistical models and word vectors, and currently supports tokenization
for 30+ languages. It features the fastest syntactic parser in the
world, convolutional neural network models for tagging, parsing and
named entity recognition and easy deep learning integration.
|
streamlit
fast way to build custom ML tools
|
Versions of package streamlit |
Release | Version | Architectures |
VCS | 0.56.0-1 | all |
|
License: Apache-2.0
Debian package not available
Version: 0.56.0-1
|
Streamlit lets you create apps for your machine learning projects with
deceptively simple Python scripts. It supports hot-reloading, so your
app updates live as you edit and save your file. No need to mess with
HTTP requests, HTML, JavaScript, etc. All you need is your favorite
editor and a browser.
|
Unofficial packages built by somebody else
python3-orange
|
|
License: GPLv3
|
Orange is a component-based data mining software. It includes a range
of data visualization, exploration, preprocessing and modeling
techniques. It can be used through a nice and intuitive user interface
or, for more advanced users, as a module for Python programming language.
|
No known packages available but some record of interest (WNPP bug)
Fast Library for Approximate Nearest Neighbors
|
|
License: BSD
Debian package not available
Language: C++
|
FLANN is a library for performing fast approximate nearest neighbor searches
in high dimensional spaces. It contains a collection of algorithms we found
to work best for nearest neighbor search and a system for automatically
choosing the best algorithm and optimum parameters depending on the dataset.
|
Modular Machine Learning Library
|
|
License: BSD
Debian package not available
Language: Python
|
PyBrain is a modular machine learning library for Python. Its goal is to offer
flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks
and a variety of predefined environments to test and compare your algorithms.
PyBrain currently features algorithms for Supervised Learning, Unsupervised
Learning, Reinforcment Learning and Black-box Optimization.
|
|