Summary
Modeling of neural systems
Debian Science - pakker til modellering af neurale systemer
Denne metapakke vil installere Debianpakker, som kan være nyttige for
videnskabsmænd interesseret i modellering af neurale netværkssystemer på
forskellige niveauer (fra en enkel neuron til komplekse netværk).
Udvalget af pakker er målrettet anvendelsen af simuleringsteknikker.
Metoder som udviklere refereres til er metapakkerne science-statistics,
science-imageanalysis, science-numericalcomputation, med-imaging, og
med-imaging-dev for en række yderligere programmer, som kan være nyttige
indenfor neurovidenskabelig forskning.
Description
For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:
If you discover a project which looks like a good candidate for Debian Science
to you, or if you have prepared an unofficial Debian package, please do not hesitate to
send a description of that project to the Debian Science mailing list
Links to other tasks
|
Debian Science Modeling of neural systems packages
Official Debian packages with high relevance
cnrun
??? missing short description for package cnrun :-(
|
Versions of package cnrun |
Release | Version | Architectures |
jessie | 1.1.14-1 | amd64,armel,armhf,i386 |
|
License: DFSG free
|
|
|
neuron
Simuleringsmiljø for beregningsmiljøer med neuroner
|
Versions of package neuron |
Release | Version | Architectures |
bullseye | 7.6.3-1 | amd64,arm64,i386,ppc64el |
buster | 7.6.3-1 | amd64,arm64,i386 |
bookworm | 8.2.2-4 | amd64,arm64,armel,armhf,i386,ppc64el,s390x |
sid | 8.2.2-7 | amd64,arm64,armel,armhf,i386,ppc64el,riscv64,s390x |
trixie | 8.2.2-7 | amd64,arm64,armel,armhf,i386,ppc64el,riscv64,s390x |
upstream | 9.0.dev |
|
License: DFSG free
|
NEURON er et simuleringsmiljø til modellering af individuelle neuroner og
netværk af neuroner. Det tilbyder værktøjer til nem bygning, håndtering og
brug af modeller på en måde, der er numerisk fornuftig og beregningsmæssig
effektiv. Det er specielt velegnet til problemer, der er tæt forbundet med
eksperimentelle data, specielt dem der involverer celler med komplekse
anatomiske og biofysiske egenskaber.
NEURON tilbyder
- »naturlig syntaks«, der gør det muligt at specificere modelegenskaber
i kendte idiomer
- effektiv og smerteløs delvis og midlertidig diskretisering
- flere forskellige, brugervalgte numeriske integreringsmetoder
- nem brugerflade (fortolkere + grafisk brugerflade)
- bibliotek med biofysiske mekanismer der kan udvides af brugeren
|
|
python3-brian
Simulator for spikingneurale netværk
|
Versions of package python3-brian |
Release | Version | Architectures |
trixie | 2.7.1+ds-2 | all |
sid | 2.7.1+ds-2 | all |
bullseye | 2.4.2-6 | all |
bookworm | 2.5.1-3 | all |
|
License: DFSG free
|
Brian er en ur-drevet simulator for spikingneurale netværk. Det er designet
med vægt på fleksibilitet og udvidelse, for hurtig udvikling og raffinement
af neurale modeller. Neuronmodeller er specificeret af sæt af brugerangivne
differentialligninger, tærskelbetingelser og nulstillingsbetingelser (givet
som strenge). Fokus er primært på netværk med »single compartment
neuron«-modeller (f.eks. leaky integrate-and-fire- eller
Hodgkin-Huxley-neuroner). Inkluderede funktioner:
- et system for angivelse af kvantiteter med fysiske dimensioner
- præcis numerisk integration for lineære differentialligninger
- Euler, Runge-Kutta og eksponentiel Eulerintegration for ikkelineære
differentialligninger
- synaptiske forbindelser med forsinkelser
- korttids og langtids plasticitet (spike-timing-afhængig plasticitet)
- et bibliotek med modelkomponenter, inklusive integrate-and-fire
ligninger, synapser og ionic-strømme
- en værktøjskasse for automatisk tilpasning af spiking neuron-modeller
til elektrofysiologiske optagelser
|
|
Official Debian packages with lower relevance
python3-pynn
Simulatoruafhænging specifikation af neuronale netværksmodeller
|
Versions of package python3-pynn |
Release | Version | Architectures |
bullseye | 0.9.6-1 | all |
bookworm | 0.10.1-2 | all |
sid | 0.10.1-3 | all |
upstream | 0.12.3 |
|
License: DFSG free
|
PyNN gør det muligt at kode en model på en gang og afvikle den uden ændring på enhver simulator, som PyNN understøtter (i øjeblikket NEURON, NEST, PCSIM og Brian). PyNN oversætter cellemodelnavne og parameternavne til simulatorspecifikke navne.
|
|
xppaut
Phase Plane Plus Auto - løser mange slags ligninger
|
Versions of package xppaut |
Release | Version | Architectures |
trixie | 6.11b+1.dfsg-1.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
sid | 6.11b+1.dfsg-1.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 6.11b+1.dfsg-1.1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 6.11b+1.dfsg-1.1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 6.11b+1.dfsg-1 | amd64,arm64,armhf,i386 |
stretch | 6.11b+1.dfsg-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 6.11b+1.dfsg-1 | amd64,armel,armhf,i386 |
|
License: DFSG free
|
XPPAUT er et værktøj til løsning af
- Differentialligninger
- Differensligninger
- Forsinkelsesligninger
- Funktionelle ligninger,
- Grænseværdiproblemer, og
- Stokastiske ligninger
Koden samler et antal nyttige algoritmer og er ekstrem flytbar. Al
grafikken og grænsefladen er skrevet helt i Xlib, hvilket forklarer den
noget idiosynkratiske og primitive kontrolgrænseflade.
|
|
Packaging has started and developers might try the packaging code in VCS
nest
A simulator for networks of spiking neurons
|
|
License: non-FOSS
|
NEST is a simulation system for large networks of biologically realistic
point-neurons and neurons with a small number of electrical compartments.
Please register by following this link if you are using nest.
Please cite:
Gewaltig M-O and Diesmann M:
NEST (Neural Simulation Tool)
(2007)
|
No known packages available but some record of interest (WNPP bug)
simulator of heterogeneous networks of neurons and synapses
|
|
License: GPL-3+
Debian package not available
Language: C, Python
|
PCSIM is a tool for simulating heterogeneous networks composed of
different model neurons and synapses. This simulator is written in
C++ with a primary interface to the programming language Python. It
is intended to simulate networks containing up to millions of neurons
and on the order of billions of synapses. This is achieved by
distributing the network over different nodes of a computing cluster
by using MPI.
|
No known packages available
invt
iLab Neuromorphic Vision C++ Toolkit
|
|
License: GPL-2+
Debian package not available
Language: C++ + Perl, Tcl, Matlab
|
The iLab Neuromorphic Vision C++ Toolkit (iNVT, pronounced
``invent'') is a comprehensive set of C++ classes for the development
of neuromorphic models of vision. Neuromorphic models are
computational neuroscience algorithms whose architecture and function
is closely inspired from biological brains. The iLab Neuromorphic
Vision C++ Toolkit comprises not only base classes for images,
neurons, and brain areas, but also fully-developed models such as our
model of bottom-up visual attention and of Bayesian surprise.
Features at a glance:
- Low-level neural network simulation classes.
- High-level neuromorphic classes.
- Neuromorphic models of visual attention.
- Hardware interfacing
- Parallel processing classes for the simulation of complex models.
- Neuromorphic modeling environment.
Please register by following this link if you are using invt.
|
moose
multiscale simulation environment for neuroscience
|
|
License: LGPL
Debian package not available
Language: C++, Python
|
MOOSE is the Multiscale Object-Oriented Simulation Environment. It is the base
and numerical core for large, detailed simulations including Computational
Neuroscience and Systems Biology.
MOOSE spans the range from single molecules to sub-cellular networks, from
single cells to neuronal networks, and to still larger systems. It is
backwards-compatible with GENESIS, and forward compatible with Python and
XML-based model definition standards like SBML and MorphML.
MOOSE is coordinating with the GENESIS-3 project towards the goals of
developing educational resources for modeling.
|
|