Debian Science Project
Summary
Bugs of task machine-learning
Total bugs: 68
Open bugs: 49
Fixed bugs: 19
Links to other tasks
Biology 14 (194)
Chemistry 77 (801)
Data acquisition 53 (225)
Data management 52 (465)
Devices 6 (105)
Economics 32 (117)
Engineering 85 (851)
Engineering-dev 44 (481)
Geography 72 (496)
Geometry 5 (36)
Linguistics 94 (395)
Logic 38 (258)
Machine learning 49 (381)
Mathematics 253 (2074)
Mathematics-dev 174 (1690)
Meteorology 77 (500)
Meteorology-dev 191 (794)
Nanoscale physics 323 (2296)
Physics 82 (840)
Physics-dev 35 (362)
Presentation 89 (732)
Psychophysics 19 (228)
Robotics 116 (492)
Robotics-dev 22 (196)
Simulations 41 (457)
Social 0 (0)
Statistics 58 (365)
Tools 19 (120)
Typesetting 292 (1932)
Viewing 303 (1771)
Viewing-dev 64 (588)
Workflow 28 (186)
Legend
SeverityDependentSuggested
critical 0 0
grave 0 0
serious 2 0
important 14 0
normal 9 2
minor 6 6
wishlist 10 0

Summary bugs page of task Machine learning

Immediately looking into bugs of the dependencies of this task is advised (381)*

Open bugs in dependent packages

2 serious, 14 important, 9 normal, 6 minor, 10 wishlist
544693 libga-dev: inclusion of GA headers interferes with unrelated code
716094 [Mayhem] Bug report on gprolog: ma2asm crashes with exit status 139
716455 [Mayhem] Bug report on gprolog: wam2ma crashes with exit status 139
1036468 gprolog: patch to add watch + upstream/metadata
1096760 gprolog: ftbfs with GCC-15 forky, ftbfs, sid
1015500 liblinear: ftbfs with LTO (link time optimization) enabled experimental, forky, sid, trixie
691432 libsvm-tools: please, provide the octave interface to libsvm
809737 libsvm3-java: Please include pom metadata in /usr/share/maven-repo
1009324 GPU (CUDA) Support
1015527 libsvm: ftbfs with LTO (link time optimization) enabled experimental, forky, sid, trixie
1105475 libsvm: FTBFS with make --shuffle=reverse: svm_toy.java:280: error: cannot find symbol forky, ftbfs, sid, trixie
812852 libvigraimpex: fail of test_multiarray_chunked on ppc64el
852051 libvigraimpex: captures build path (doesn't build reproducible)
1035161 libvigraimpex: please add autopkgtests (to add coverage for python3-numpy)
1091257 mcl: FTBFS on armhf: mcxquery.c:1242:58: error: passing argument 4 of ‘get_cls_id’ from incompatible pointer type [-Wincompatible-pointer-types] forky, ftbfs, sid, trixie
1007813 Newer LIBSVM breaks mdp
1085687 mdp: Python SyntaxWarning
1119748 mdp: FTBFS: E ValueError: You must pass an estimator to SelfTrainingClassifier. Use `estimator`. forky, ftbfs, sid
989958 libopencv-*-dev: Missing pkg-config file (.pc) upstream, wontfix
1100979 python3-opencv: please provide typing stubs
983517 pytorch: Build documentation
1057644 pytorch: build for all supported Python versions wontfix
1102203 pytorch: CVE-2025-3136 security, upstream
1102219 pytorch: CVE-2025-2148 security, upstream
1102220 pytorch: CVE-2025-2149 security, upstream
1102232 pytorch: CVE-2025-3000 security, upstream
1102236 pytorch: CVE-2025-3121 security, upstream
1104931 pytorch: CVE-2025-4287 security, upstream
1108733 RuntimeError: operator torchvision::nms does not exist
1116534 pytorch: CVE-2025-55554 security, upstream
1116537 pytorch: CVE-2025-55551 fixed-upstream, security, upstream
1116543 pytorch: CVE-2025-46148 fixed-upstream, security, upstream
1120794 pytorch: CVE-2025-63396 security, upstream
1121537 pytorch: please enable build on loong64 patch
1126723 pytorch: CVE-2026-24747 security, upstream
1128208 pytorch: enable support of ROCm
805395 predict.gbm() using single.tree=TRUE does not return the correct predictions with multinomial distribution fixed-upstream, moreinfo
1046775 scikit-learn: Fails to build source after successful build ftbfs, sid, trixie
1064280 scikit-learn: armhf tests failing: not giving expected divide-by-zero warning
962712 please add support for x13as
1047280 statsmodels: Fails to build source after successful build ftbfs, sid, trixie

Open bugs in suggested packages

2 normal, 6 minor
1030327 science-numericalcomputation: please stop recommending python3-theano as it is being removed
1032638 please drop transitional package science-electronics from src:debian-science
1055339 debian-science: please replace recommendation of src:dolfin by src:fenics-dolfinx
1116105 science-nanoscale-physics: recommends ncview which is not in unstable
1116106 science-meteorology: recommends ncview which is not in unstable
1116107 science-mathematics-dev: recommends libsparskit-dev which is not in unstable
1116108 science-mathematics-dev: recommends libitsol-dev which is not in unstable
1120791 science-engineering-dev: recommends libtet1.5-dev which is not in unstable

Done bugs

1083727 pytorch: (build-)depends on deprecated module python3-pkg-resources sid, trixie
1083729 pytorch: (build-)depends on deprecated module python3-pkg-resources sid, trixie
1102229 pytorch: CVE-2025-2953 fixed-upstream, security, upstream
1102230 pytorch: CVE-2025-2998 fixed-upstream, security, upstream
1102231 pytorch: CVE-2025-2999 fixed-upstream, security, upstream
1102233 pytorch: CVE-2025-3001 fixed-upstream, security, upstream
1103455 pytorch: CVE-2025-3730 fixed-upstream, security, upstream
1116531 pytorch: CVE-2025-55560 fixed-upstream, security, upstream
1116532 pytorch: CVE-2025-55558 fixed-upstream, security, upstream
1116533 pytorch: CVE-2025-55557 fixed-upstream, security, upstream
1116535 pytorch: CVE-2025-55553 fixed-upstream, security, upstream
1116536 pytorch: CVE-2025-55552 fixed-upstream, security, upstream
1116538 pytorch: CVE-2025-46153 fixed-upstream, security, upstream
1116539 pytorch: CVE-2025-46152 fixed-upstream, security, upstream
1116540 pytorch: CVE-2025-46150 fixed-upstream, security, upstream
1116541 pytorch: CVE-2025-46149 fixed-upstream, security, upstream
1124061 pytorch: Please upgrade build-dep to llvm/clang 21
1125231 src:r-cran-bayesm: fails to migrate to testing for too long forky, sid
1008369 scikit-learn: FTBFS: dh_auto_test: error: pybuild --test -i python{version} -p "3.10 3.9" returned exit code 13 bookworm, ftbfs, moreinfo, sid, trixie, unreproducible
*To estimate the overall status of the packages in the dependencies of a metapackage a weighted severity is calculated. Done bugs are ignored and bugs in dependent and recommended packages are weighted by factor three compared to suggested packages. Release critical bugs have a much larger weight than important, while the contribution of normal bugs is even smaller and minor bugs have a very small weight. Wishlist bugs are ignored in this calculation. The resulting sum is compared to some boundaries to find a verbal form. The actual numbers need some adjustment to make real sense - this evaluation method is in testing phase.
The severities of bugs are weighted as follows:
critical10
grave10
serious10
important5
normal3
minor1
wishlist0
Last update: Tue, 17 Feb 2026 16:11:58 -0000